268 research outputs found

    Evolution of a collapsing and exploding Bose-Einstein condensate in different trap symmetries

    Full text link
    Based on the time-dependent Gross-Pitaevskii equation we study the evolution of a collapsing and exploding Bose-Einstein condensate in different trap symmetries to see the effect of confinement on collapse and subsequent explosion, which can be verified in future experiments. We make prediction for the evolution of the shape of the condensate and the number of atoms in it for different trap symmetries (cigar to pancake) as well as in the presence of an optical lattice potential. We also make prediction for the jet formation in different cases when the collapse is suddenly terminated by changing the scattering length to zero via a Feshbach resonance.Comment: 8 pages, 11 ps figures, Physical Review

    Photoassociative Frequency Shift in a Quantum Degenerate Gas

    Full text link
    We observe a light-induced frequency shift in single-photon photoassociative spectra of magnetically trapped, quantum degenerate 7Li. The shift is a manifestation of the coupling between the threshold continuum scattering states and discrete bound levels in the excited-state molecular potential induced by the photoassociation laser. The frequency shift is observed to be linear in the laser intensity with a measured proportionality constant that is in good agreement with theoretical predictions. The frequency shift has important implications for a scheme to alter the interactions between atoms in a Bose-Einstein condensate using photoassociation resonances.Comment: 3 figure

    Rate limit for photoassociation of a Bose-Einstein condensate

    Full text link
    We simulate numerically the photodissociation of molecules into noncondensate atom pairs that accompanies photoassociation of an atomic Bose-Einstein condensate into a molecular condensate. Such rogue photodissociation sets a limit on the achievable rate of photoassociation. Given the atom density \rho and mass m, the limit is approximately 6\hbar\rho^{2/3}/m. At low temperatures this is a more stringent restriction than the unitary limit of scattering theory.Comment: 5 pgs, 18 refs., 3 figs., submitted to Phys. Rev. Let

    Scattering of plasmons at the intersection of two metallic nanotubes: Implications for tunnelling

    Full text link
    We study theoretically the plasmon scattering at the intersection of two metallic carbon nanotubes. We demonstrate that for a small angle of crossing, Ξâ‰Ș1\theta \ll 1, the transmission coefficient is an oscillatory function of λ/Ξ\lambda/\theta, where λ\lambda is the interaction parameter of the Luttinger liquid in an individual nanotube. We calculate the tunnel density of states, Îœ(ω,x)\nu(\omega,x), as a function of energy, ω\omega, and distance, xx, from the intersection. In contrast to a single nanotube, we find that, in the geometry of crossed nanotubes, conventional "rapid" oscillations in Îœ(ω,x)\nu(\omega,x) due to the plasmon scattering acquire an aperiodic "slow-breathing" envelope which has λ/Ξ\lambda/\theta nodes.Comment: 4 pages, 2 figures (revised version

    Stabilizing an Attractive Bose-Einstein Condensate by Driving a Surface Collective Mode

    Full text link
    Bose-Einstein condensates of 7^7Li have been limited in number due to attractive interatomic interactions. Beyond this number, the condensate undergoes collective collapse. We study theoretically the effect of driving low-lying collective modes of the condensate by a weak asymmetric sinusoidally time-dependent field. We find that driving the radial breathing mode further destabilizes the condensate, while excitation of the quadrupolar surface mode causes the condensate to become more stable by imparting quasi-angular momentum to it. We show that a significantly larger number of atoms may occupy the condensate, which can then be sustained almost indefinitely. All effects are predicted to be clearly visible in experiments and efforts are under way for their experimental realization.Comment: 4 ReVTeX pages + 2 postscript figure

    Photoassociation of sodium in a Bose-Einstein condensate

    Full text link
    We report on the formation of ultra-cold Na2_2 molecules using single-photon photoassociation of a Bose-Einstein condensate. The photoassociation rate, linewidth and light shift of the J=1, v=135v=135 vibrational level of the \mterm{A}{1}{+}{u} molecular bound state have been measured. We find that the photoassociation rate constant increases linearly with intensity, even where it is predicted that many-body effects might limit the rate. Our observations are everywhere in good agreement with a two-body theory having no free parameters.Comment: Fixes to the figures and references. Just the normal human stupidity type stuff, nothing Earth-shatterin

    Spectral Analysis of Guanine and Cytosine Fluctuations of Mouse Genomic DNA

    Full text link
    We study global fluctuations of the guanine and cytosine base content (GC%) in mouse genomic DNA using spectral analyses. Power spectra S(f) of GC% fluctuations in all nineteen autosomal and two sex chromosomes are observed to have the universal functional form S(f) \sim 1/f^alpha (alpha \approx 1) over several orders of magnitude in the frequency range 10^-7< f < 10^-5 cycle/base, corresponding to long-ranging GC% correlations at distances between 100 kb and 10 Mb. S(f) for higher frequencies (f > 10^-5 cycle/base) shows a flattened power-law function with alpha < 1 across all twenty-one chromosomes. The substitution of about 38% interspersed repeats does not affect the functional form of S(f), indicating that these are not predominantly responsible for the long-ranged multi-scale GC% fluctuations in mammalian genomes. Several biological implications of the large-scale GC% fluctuation are discussed, including neutral evolutionary history by DNA duplication, chromosomal bands, spatial distribution of transcription units (genes), replication timing, and recombination hot spots.Comment: 15 pages (figures included), 2 figure

    Intermittent implosion and pattern formation of trapped Bose-Einstein condensates with attractive interaction

    Full text link
    The collapsing dynamics of a trapped Bose-Einstein condensate (BEC) with attractive interaction are revealed to exhibit two previously unknown phenomena. During the collapse, BEC undergoes a series of rapid implosions that occur {\it intermittently} within a very small region. When the sign of the interaction is suddenly switched from repulsive to attractive, e.g., by the Feshbach resonance, density fluctuations grow to form various patterns such as a shell structure.Comment: 5 pages, 2 figures, RevTeX, epsf.sty, corrected loss rate

    Model study on the photoassociation of a pair of trapped atoms into an ultralong-range molecule

    Full text link
    Using the method of quantum-defect theory, we calculate the ultralong-range molecular vibrational states near the dissociation threshold of a diatomic molecular potential which asymptotically varies as −1/R3-1/R^3. The properties of these states are of considerable interest as they can be formed by photoassociation (PA) of two ground state atoms. The Franck-Condon overlap integrals between the harmonically trapped atom-pair states and the ultralong-range molecular vibrational states are estimated and compared with their values for a pair of untrapped free atoms in the low-energy scattering state. We find that the binding between a pair of ground-state atoms by a harmonic trap has significant effect on the Franck-Condon integrals and thus can be used to influence PA. Trap-induced binding between two ground-state atoms may facilitate coherent PA dynamics between the two atoms and the photoassociated diatomic molecule.Comment: 11 pages, 4 figures, to appear in Phys. Rev. A (September, 2003

    Power laws and collapsing dynamics of a trapped Bose-Einstein condensate with attractive interactions

    Full text link
    The critical behavior of collective modes and the collapsing dynamics of trapped Bose-Einstein condensates with attractive interactions are studied analytically and numerically. The time scales of these dynamics both below and above the critical point of the collapse are found to obey power laws with a single parameter of N/N_c - 1, where N is the number of condensate atoms and N_c is the critical number. The collapsing condensate eventually undergoes rapid implosion, which occurs several times intermittently, and then the implosion turns to an explosion. The release energy of the explosion is found to be proportional to the square of the interaction strength, inversely proportional to the three-body recombination rate, and independent of the number of condensate atoms and the trap frequency.Comment: 9 pages, RevTeX, 7 figures, epsf.sty, corrected loss rate
    • 

    corecore